
Class Notes: 6.1 Law of Sines

Name

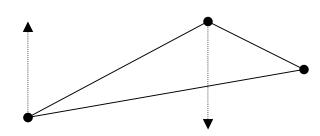
В

87

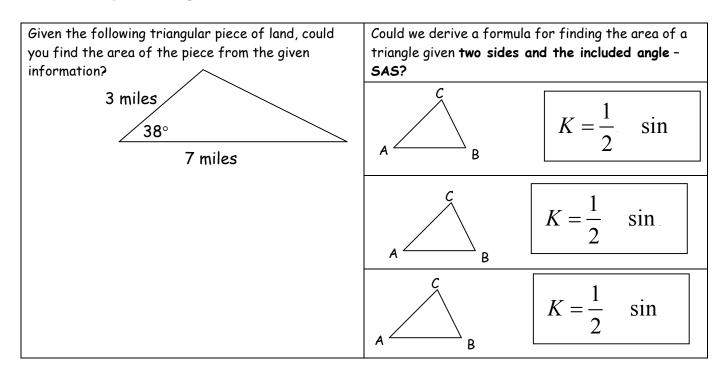
The LAW of SINES... what is it's use?

MEMORIZE: THE LAW OF SINES

For ANY triangle ABC, where a, b, and c are the lengths of the sides OPPOSITE the angles with

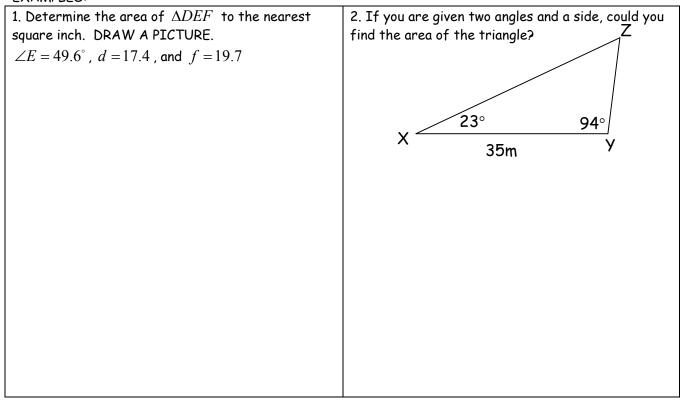

	$\sin A$	sin B	$\sin C$
measures A , B , and C (respectively)	= a	= <u> </u>	= $$

Example1: WORD PROBLEM.


A ship is moving in a straight line towards the Point Cove lighthouse. The measure of the angle of elevation from the bridge of the ship to the lighthouse beacon is 25° . Later, from a point 600 feet closer, the angle of elevation is 47° . To the nearest foot, how high is the beacon above the level of the bridge of the ship?

Example2: WORD PROBLEM.

The bearing from the pine Knob fire tower to the Colt Station fire tower is $N65^{\circ}E$, and the two towers are 30 kilometers apart. A fire spotted by rangers in each tower has a bearing of $N80^{\circ}E$ from Pine Knob and $S65^{\circ}E$ from Colt Station. Find the distance of the fire from the Pine Knob tower.


6.1 Area of a Triangle

Generally, since not every triangle is labeled A,B,C you should simply remember that the AREA of a triangle =

 $\frac{1}{2}$ the product of any______ and the sine of ______.

EXAMPLES:

Notes 6.2 Area of a Triangle

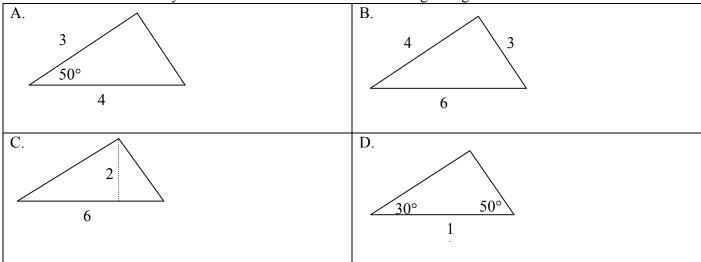
NOTE: we use this formula for finding the area of a triangle when we are given ${f SAS}$

The area, K of triangle ABC is given by any one of these formulas:

 $K = \frac{1}{2}bc\sin A \qquad \qquad K = \frac{1}{2}ac\sin B \qquad \qquad K = \frac{1}{2}ab\sin C$ AREA =

-----We also have a formula for finding the area of a triangle given $\ensuremath{\mathsf{SSS}}$

(The Greek mathematician Heron developed the formula - hence it is called HERONS' AREA FORMULA)


The area, K of triangle ABC is given by:

$$K = \sqrt{s(s-a)(s-b)(s-c)}$$
, where $s = \frac{a+b+c}{2}$. s is called the semiperimeter of the triangle.

Examples:

1. Determine the area of ΔDEF to the nearest square inch. $d = 15.2$, $e = 22.7$, and $f = 8.9$	2. You want to buy a triangular lot measuring 1350 feet by 1860 feet by 2490 feet. The price of the land is \$2200 per acre. How much does the land cost? (lacre = 43,560 square feet)

3. Which formula would you use to find the area of the following triangles?

