

Generally, since not every triangle is labeled ABC: The length of a missing side = _____

twice the product of_____

(Note: we must have SAS to use this formula)	
Examples: Solve triangle ABC.	
1. $\angle C = 100.5^{\circ}$, $a = 1.2$, and $b = 2.6$	2. $\angle A = 115^{\circ}$, $b = 10cm$, and $c = 15cm$
3. Given the following parallelogram, find the measures of the other angles and the two diagonals.	Bonus: What is the area of the parallelogram?

4. The pitcher's mound on a women's softball field is 43 feet from home plate and the distance between the bases is 60 feet. (The pitcher's mound is not halfway between home plate and second base.) How far is the pitcher's mound from first base?	5. Two ships leave port at 1P.M. One travels with a bearing of $N50^{\circ}E$ at a speed of 10 miles per hour. The other ship travels with a bearing of $S42^{\circ}E$ at a speed of 15 miles per hour. At 3 P.M., how far apart will the ships be?

Notes 6.2 Part 2

We used it to *find a side* given

Remember the Law of Sines We used it to <u>find a side</u> given _____ or We used it to <u>find an angle</u> given _____ (Note: we had to always check for the number of triangle on this one!) Remember the Law of Cosines

Could we <u>find an angle</u> given SSS ? Yes, we could use the Law of Cosines Solve for angle C $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ so C =_____ $c^{2} = a^{2} + b^{2} - 2ab \cos C$ $\cos B = \frac{a^2 + c^2 - b^2}{2 a c}$ so C =_____ $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ so C =_____

Generally, since not every triangle is labeled ABC:

The measure of a missing angle = _____

, all divided

by ____

(Note: we must have SSS to use this formula)

