Pre-Calculus Notes 6.2
Law of Cosines

Remember the Law of Sines
We used it to find a side given \qquad Or \qquad
We used it to find an angle given \qquad (Note: we had to always check for the number of triangle on this one!)

Could we find a side given SAS

$$
\begin{aligned}
c^{2}= & h^{2}+(b-x)^{2} \\
& \text { algebra magic }
\end{aligned}
$$

MEMORIZE: THE LAW OF COSINES
For ANY triangle $A B C$, where a, b, and c are the lengths of the sides OPPOSITE the angles with measures A, B, and C (respectively)...

* $\quad a^{2}=b^{2}+c^{2}-2 b c \cos A$
* $\quad b^{2}=a^{2}+c^{2}-2 a c \cos B$
* $c^{2}=a^{2}+b^{2}-2 a b \cos C$
$c^{2}=a^{2}+b^{2}-2 a b a c$

Generally, since not every triangle is labeled $A B C$:
The length of a missing side = \qquad
twice the product of \qquad
(Note: we must have SAS to use this formula)
Examples: Solve triangle $A B C$.

1. $\angle C=100.5^{\circ}, a=1.2$, and $b=2.6$	2. $\angle A=115^{\circ}, b=10 \mathrm{~cm}$, and $c=15 \mathrm{~cm}$
3. Given the following parallelogram, find the measures of the other angles and the two diagonals. 10 cm A	

4. The pitcher's mound on a women's softball field is 43 feet from home plate and the distance between the bases is 60 feet. (The pitcher's mound is not halfway between home plate and second base.) How far is the pitcher's mound from first base?

5. Two ships leave port at 1P.M. One travels with a bearing of $N 50^{\circ} E$ at a speed of 10 miles per hour. The other ship travels with a bearing of $S 42^{\circ} E$ at a speed of 15 miles per hour. At 3 P.M., how far apart will the ships be?

Notes 6.2 Part 2

Remember the Law of Sines
We used it to find a side given \qquad or \qquad
We used it to find an angle given \qquad (Note: we had to always check for the number of triangle on this one!)

Remember the Law of Cosines
We used it to find a side given \qquad

Could we find an angle given SSS ? Yes, we could use the Law of Cosines

Solve for angle C
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

$$
\begin{aligned}
& \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \text { so } c=\square \\
& \cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \text { so } c= \\
& \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \text { so } c=
\end{aligned}
$$

Generally, since not every triangle is labeled $A B C$:
The measure of a missing angle $=$ \qquad
-
by
(Note: we must have SSS to use this formula)

Examples:

1. Find angle A in triangle $A B C . a=20, \mathrm{~b}=18$, and $c=13$.
2. Given the following parallelogram, find the measures of the angles and the other diagonal, given $A C=10$.

3. Solve the following triangle $A B C$

4. A ship travel 60 miles due east, then adjusts its course northward. After traveling 80 miles in that direction, the ship is 139 miles from its point of departure. Describe the bearing of the ship from point B to point C.
5. A 150-foot vertical tower is to be erected on the side of a hill that makes a 5° angle with the horizontal. Find the length of the two guy wires that will be needed to anchor the base 100 feet uphill and 100 feet downhill.

