Parametric Equations

An ant in the corner of a wall 6 inches from the floor sees a cookie on the floor, 10 inches from the corner. The ant wants the cookie and starts toward the cookie in a straight line at a rate of 1 vertical inch per 2 horizontal inches per second. A lizard, 2 inches from the corner, on the floor, traveling in a straight line can travel at a rate of 1 vertical inch per 3 horizontal inches in a second. Will the lizard "intersect" the ant at just the right time for dinner?

Ant Lizar

y=\frac{1}{2}x+6

Algebra is really about relationships. Parametric equations get us closer to the real-world relationship.

Consider the graphs below, each models a different aspect of what happens when a certain object is thrown into the air. Figure 1 shows the vertical distance the object travels as a function of time, while figure 2 shows the object's horizontal distance as a function of time. Figure 3 shows the object's vertical distance as a function if its horizontal distance

Sketch the curve given by each pair of parametric equation over the given interval.

	Oncion	THE CUIT	c given i	J, C
$x=t^2$	+5			
1. t		interval -	$4 \le t \le 4$.	>
$y = \frac{1}{2}$	-4	ha		
t	-X	y	t	X

t	·X	y	t	X	у
-4	21	2	1	6	4,5
-3	14	2.5	2	9	5
-2	9	3	3	14	5.5
-1	6	3,5	4	21	6
0	5	4			

x = 3t	
$2. y = \sqrt{t+6}$	interval $0 \le t \le 8$
$y = \sqrt{t+6}$	

$y = \sqrt{t}$	+0				
t	X	y	t	X	y
0			5		
1			6		
2			7		
3			8		
4					

- A) Write a pair of parametric equations to represent EACH runner. Remember, d = rt.

CHRIS:
$$x_1 = 28 \times y_1 = 1$$

- B) Find a viewing window to simulate a 100-yard dash. WATCH YOUR UNITS.
- C) Who is ahead after 3 seconds? Who is ahead after 5 seconds? Who wins the race? What was the winner's time? 28 + = 300

$$t = 10.77$$

$$t = 3 \text{ seconds} = 5 \text{ seconds} = 10.78$$

$$Chris = 84 = 140$$

$$Jason = 96 = 140$$

- 12. Luna and Ruby are competing in a 100-meter dash. When the starter gun fires, Luna runs 8.0 meters per Second after a 0.1 second delay and Ruby runs 8.1 meters per second after a 0.2 second delay.
- A) Write a pair of parametric equations to represent EACH runner. Remember, d = rt R

LUNA:
$$x_1 = \frac{18(t+1)}{20}$$
 $y_1 = 2$

RUBY: $x_2 = \frac{81(t+2)}{20}$ $y_2 = 4$

C) Who is ahead after 3 seconds? Who is ahead after 5 seconds? Who wins the race? What was the winner's time?

t	3 seconds	5 seconds	
tuna	24.8	408	
Ruby	25.92	42.12	

If the women ran the 200 meter dash instead of the 100 meter, who would win? Explain your answer.