We will now work some problems involving the APPLICATION of Parametric Equations.

Chris can sprint at 28 feet per second. Jason sprints at 22 feet per second. Chris gives Jason a 30-foot head start.



=300 At b. Find a viewing window to simulate a 100-yard dash. WATCH YOUR UNITS

tmin= 0 tmax = 20 tstep=.6 ymin = 0 ymax = 6 yster = 1

22t

c. Who is ahead after 3 seconds? Who is ahead after 5 seconds? Who wins the race? What was the winner's time?

| t     | 3 seconds | 5 seconds |       |
|-------|-----------|-----------|-------|
| Chris | 84        | 140.      | wine  |
| Jason | 96        | 140       | loser |

Start

Chris

Jason

gason is ahead after 3 seconds. at 5 seconds, they are tied. First to reach 300 ft wins,

y (in feet)

22++30=300

Example 2: Anytown High School is planning a play. The script calls for two characters to meet on stage. Lauren starts at the point (0 feet, 7 feet) and travels 2 feet horizontally and 1 foot vertically every second. Alex starts at the point (4 feet, 0 feet) and travels vertically at the rate of 2 feet per second. If Alex and Lauren start walking at the same time, will they meet?







| c. Complete the table of values for Lauren and A | and Ale | auren | for | values | of | table | the | lete | Comp | c. |
|--------------------------------------------------|---------|-------|-----|--------|----|-------|-----|------|------|----|
|--------------------------------------------------|---------|-------|-----|--------|----|-------|-----|------|------|----|

|             | Lauren            |                 |
|-------------|-------------------|-----------------|
| Time<br>(s) | x<br>(horizontal) | y<br>(vertical) |
| 0           | 0                 | 7               |
| 1           | 2                 | 6               |
| 2           | 4                 | 5               |
| 3           | 6                 | 4               |
| 4           | 8                 | 3               |
| 5           | 10                | 2               |
| 6           | 12                | 1               |
| 7           | 14                | 0               |
| t           | 2+                | 7-+             |

| Alex        |                   |                 |  |  |  |
|-------------|-------------------|-----------------|--|--|--|
| Time<br>(s) | x<br>(horizontal) | y<br>(vertical) |  |  |  |
| 0           | 4                 | O               |  |  |  |
| 1           | 4                 | 2               |  |  |  |
| 2           | 4                 | 4               |  |  |  |
| 3           | 4                 | 6               |  |  |  |
| 4           | 4                 | 8               |  |  |  |
| 5           | 4                 | 10              |  |  |  |
| 6           | 4                 | 12              |  |  |  |
| 7           | 4                 | 14              |  |  |  |
| t           | 4                 | 24              |  |  |  |

d. Can you tell from the table if Lauren and Alex meet? Explain your answer.

not accurately - table only account for time in Expert seconds. again, they could meet @ graction of a second.

e. Write a pair of equations for Lauren's horizontal and vertical position in terms of the third variable, or parameter, time.

$$x_1 = 2$$
 and  $y_1 = 7$ 

f. Write a pair of parametric equations for Alex's horizontal and vertical position in terms of the third variable, or parameter, time.

$$x_2 = \underline{\qquad \qquad} \qquad \text{and} \qquad y_2 = \underline{\qquad \qquad} \downarrow \underline{\qquad}$$

No.

g. The script is incorrect since Alex and Lauren do not meet on stage at the same time. The director of the play decided that Lauren and Alex should meet after 4 seconds. Write a new pair of parametric equations that will produce this result.





\* can also change starting positions