Pre-Calculus Notes Name: <u>her</u> Section 10.8 - Graphs of Polar Equations

To graph $r=4\sin\theta$ on the graphing calculator:

MODE:

Degree, Polar

WINDOW: $\theta \min = 0^{\circ}$, $\theta \max = 360^{\circ}$, $\theta \text{step} = 15^{\circ}$

Try x [-4, 4] and y [-4, 4].

Enter $r = 4\sin\theta$. It seems to be an _______, but it isn't. (oval-shaped)

It is a <u>circle</u>. Use ZOOM 5! Laguares up the window

How do we find the coordinates for the graph so we can transfer to our polar graph? There are 2 options.

OPTION 1:

2ND FORMAT - PolarGC

2ND CALC - value

Enter your desired value for heta and your calculator will give you the corresponding value for r.

OPTION 2:

2ND TBLSET

TblStart = 0

 $\Delta \text{ Tbl} = 15$

2ND TABLE

Scroll up and down to get your desired coordinates.

Now, graph.

MEMORIZE! Graphs			Name of Shape	Equation Type
$r = 3\sin\theta$	$r = 2\cos\theta$	$r = -\frac{1}{2}\sin\theta$	Circle	r=acoso m r=asino
$r = \sin 2\theta$	$r = -2\cos 3\theta$	$r = 4\sin 4\theta$	Nose	r=acosno r=asinno nodd -> n peto nodd -> n peto n even -> zn pe
$r = 1 + \sin \theta$	$r = 2 - 2\cos\theta$	$r = 3 + 3\cos\theta$	Cardiod	$Y = a \pm b \cos \theta$ on $Y = a \pm b \sin \theta$ $\Rightarrow a = 1$
$r = 1 + 2\sin\theta$	$r = 2 - 3\cos\theta$	$r = 1 - 3\sin\theta$	linagen W/ Sloop	$r=a\pm b\cos\theta$ or $r=a\pm b\sin\theta$ $\star a 2 $
$r = -3 + 2\sin\theta$	$r = -3 - 2\cos\theta$	$r = 3 + 2\sin\theta$	Dimagin W/o loop	$r = a \pm b \cos \theta$ $r = a \pm b \sin \theta$ $\star \left \frac{a}{b} \right > 1$