Pre-Calculus Notes

Name

Section 12.1 - Intro to Limits

Today we will look at limits, so let's talk about what a limit is...

Ex. 1)
$$y = 2x - 3$$

QUESTION: As the x values get closer to 2, what are the y values getting closer to? ____

NOTATION:
$$\lim_{x\to 2} 2x - 3 =$$

$$x \to 2, y \to 1$$

WITH CALCULATOR

Go to table and look at the x values as they approach 2. What are the y values approaching?

WITHOUT A CALCULATOR

Could we simply substitute the 2 in for x in y = 2x - 3? Yes.

$$y = 2(2) - 3$$

 $y = 4 - 3$

We call this the SUBSTITUTION METHOD.

QUESTION: As the x values get closer to 4,

That was a really simple problem. Let's try something more challenging.

Ex. 2) $y = \frac{2x^2 - 11x + 12}{x - 4}$ $y = \frac{(2x - 3)(x - 4)}{x - 4}$ y = 2x - 3Whole @ (4,5)

Ex. 2)
$$y = \frac{2x^2 - 11x + 12}{x - 4}$$

what are the y values getting closer to? ____5

NOTATION.
$$\lim_{x \to \frac{\pi}{4}} \frac{2x^2 - 11x + 12}{x - 4} =$$

$$as \ x \to \frac{\pi}{4}, \ y \to \frac{\pi}{5}$$

WITH CALCULATOR

Go to table and look at the x values as they approach 4. What are the y values approaching? $\underline{\hspace{0.5cm}}$? Do you see a value for y when x = 4? NO Why not? Would be dividing by zero Put your calculator on the "ASK" table function and complete the following table:

X	3.9	3.99	3.999	4	4.001	4.01	4.1
У	4.8	4.98	4.998	5	5.002	5,02	5.2

Therefore
$$\lim_{x \to 4} \frac{2x^2 - 11x + 12}{x - 4} = \frac{5}{}$$

WITHOUT A CALCULATOR

Could we simply substitute the 4 in for x in $y = \frac{2x^2 - 11x + 12}{x - 4}$? No Why NOT? denom = 0 So how do we do this problem without a calculator? Factor and reduce!

$$y = \frac{2x^2 - 11x + 12}{x - 4} = \frac{(2x - 3)(x - 4)}{(x - 4)} = \frac{2x - 3}{(x - 4)}$$

Now what do we do to get the y value to goes with x = 4? 2(4) - 3 = 5

We call this the CANCELLATION METHOD OR DIVIDING OUT TECHNIQUE.

Now let's focus on using the calculator and table for awhile.

Ex. 3) For
$$f(x) = \frac{x^3 - x^2 + x - 1}{x - 1}$$
, $\lim_{x \to 1} f(x) = \frac{2}{x - 1}$

or as $x \to 1$, $y \to 2$

WITH CALCULATOR

Go to table and look at the x values as they approach 1. What are the y values approaching? ?

Do you see a value for y when x = 1? No Why not? denom would be zero

Put your calculator on the "ASK" table function and complete the following table:

To your district the following response								
	\mathcal{X}	0.9	0.99	0.999	1	1.001	1.01	1.1
	y	1.81	1.9801	1.998	2	2.002	2.0201	2.21

Ex. 4) For
$$f(x) = \frac{x}{\sqrt{x+1} - 1}$$
, $\lim_{x \to 0} f(x) = \frac{2}{x+1}$

WITH CALCULATOR

*

Go to table and look at the x values as they approach 0. What are the y values approaching?

Do you see a value for y when x = 0? no Why not? denom would be zero

	4	01	001				
X	-0.9-	-0.99	-0.999	10	1.001	3 .01	₹.1
У	1.9487	1.995	1.9995	2	2.0005		2.0488

Ex. 5)
$$\lim_{x \to 4} \frac{\frac{x}{x+2} - 2}{x+4} = \frac{.5}{.5}$$

WITH CALCULATOR:

1	772777 07120	02711011			Ţ			
	X	-4.1	-4.01	-4.001	-4	- 3.999	-3.99	-3.9
The same of the sa	y	017619	:49751	. 49975	. 5	,50025	. 50251	.52632

Ex. 6)
$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{x}$$

WITH CALCULATOR: Put your mode in RADIANS!!!!

1			7 7 0 0 0 1 1 1 1 0 0 0 0	7				
-	. X	. \	01	001	0	100.	.01	" 1
-	У	. 99883	. 9998	. 999999		.999999	, 99998	.99833

Now let's do the following problems using the SUBSTITUTION METHOD - NO CALCULATOR!

Ex. 7)
$$\lim_{x \to 2} \frac{x^2 - x + 1}{x + 1} = \frac{2^2 - 2 + 1}{2^2 + 1} = \frac{3}{3} = \boxed{1}$$

Ex. 8)
$$\lim_{x \to 0} \frac{\sqrt{x+1+2}}{x+3} = \frac{\sqrt{0+1} + 2}{0+3} = \frac{3}{3} = 1$$

Ex. 9)
$$\lim_{x \to \pi} \frac{\tan x}{x} = \frac{\tan \pi}{\pi} = \frac{\cos \pi}{\pi}$$

Ex. 10)
$$\lim_{x \to 2} e^{3x} = e^{3 \cdot 2} = e^{3 \cdot 2}$$

Ex. 11)
$$\lim_{x \to \sqrt{3}} \arcsin\left(\frac{x}{2}\right) = \arcsin\left(\frac{\sqrt{3}}{2}\right)$$
 what angle has a sine-value of $\frac{\sqrt{3}}{2}$?

Ex. 12)
$$\lim_{x \to e^2} \ln x = \ln e^2 = 2 \ln e = 2 \cdot 1 = 2$$

Ex. 13)
$$\lim_{x \to \frac{\pi}{2}} \cos(2x) = \cos(2x) = \cos(2x) = \cos(2x)$$

Do functions always have a limit? Let's look.

Ex. 1)
$$y = \frac{|x|}{x}$$

QUESTION: As the x values get closer to 0, what are the y values getting closer to?

WITH CALCULATOR

As $x \to 0$ from the left side, $y \to -1$ or always is ______

We call this the <u>left-hand limit</u> or $\lim_{x\to 0^-} \frac{|x|}{x} = \frac{1}{x}$

As $x \to 0$ from the right side, $y \to \underline{\hspace{0.2cm}} \downarrow \underline{\hspace{0.2cm}}$ or always is $\underline{\hspace{0.2cm}} \downarrow \underline{\hspace{0.2cm}}$ We call this the <u>right-hand limit</u> or $\lim_{x \to 0^+} \underline{\hspace{0.2cm}} \underline{\hspace{$

Since the y values are approaching different numbers form the left and right, we do not have a general or overall limit.

Thus
$$\lim_{x\to 0} \frac{|x|}{x} = \frac{does}{does}$$
 not exist

Notice: The left-hand and the right hand limits MUST be the same number in order for the function to have a general limit.

Ex. 2)
$$y = \frac{2x}{x-3}$$

QUESTION: As the x values get closer to 3, what are the y values getting closer to?

NOTATION:
$$\lim_{x \to 3} \frac{2x}{x-3} = \underline{\qquad} D N E$$

WITH CALCULATOR

As $x \to 3$ from the left side, $y \to -\infty$

		,		1	1
X	2.9	2.99	2.999	2.9999	3
У	- 58	-598	-5998	-59998	- 00

Thus the left-hand limit or
$$\lim_{x\to 3^-} \frac{2x}{x-3} = \frac{-\infty}{-\infty}$$

As $x \to 3$ from the right side, $y \to -\infty$

X	3	3.0001	3.001	3.01	3.1	•
У	+ 00	60002	6002	602	62	

Thus the right-hand limit or
$$\lim_{x\to 3^+} \frac{2x}{x-3} = \frac{1}{1+\infty}$$

Since the y values are approaching different numbers from the left and right, we do not have a general or overall limit.

Thus
$$\lim_{x\to 3} \frac{2x}{x-3} = \text{does not exist}$$

Ex. 3)
$$\lim_{x\to 0} \frac{1}{x^2} = DNE$$

WITH CALCULATOR

As $x \to 0$ from the left side, $y \to +\infty$

Thus the <u>left-hand limit</u> or $\lim_{r \to \infty} \frac{1}{r^2} = \frac{+\infty}{r}$

Thus the <u>right-hand limit</u> or $\lim_{r \to \infty} \frac{1}{r^2} = \frac{1}{r^2}$

Please note that some books DO allow a limit to be $+\infty$ or $-\infty$, but your book DOES NOT.

the same of the sa	Ex. 4)	f(x) =	$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$	- (greatest	integer	function)
--	--------	--------	--	-------------	---------	-----------

$\lim_{x \to 2^-} \left[\frac{1}{3} x \right] = \bigcirc$	$\lim_{x \to 3^-} \left[\frac{1}{3} x \right] = 0$
$\lim_{x \to 2^+} \left[\frac{1}{3} x \right] = 1$	$\lim_{x \to 3^+} \left[\frac{1}{3} x \right] = 1$
$\lim_{x\to 2} \left[\frac{1}{3} x \right] = DNE$	$\lim_{x \to 3} \left[\frac{1}{3} x \right] = DNE$

Now, let's see if we can determine limits by just looking at a graph.

$$y = \begin{cases} x^2 - 1, & x < 0 \\ 2x, & 0 < x < 1 \\ 1 & x = 1 \\ -2x + 4, & 1 < x < 2 \\ 0, & 2 < x \le 3 \end{cases}$$

2a. Does f(0) exist?

3a. Does f(1) exist?

1a. Does
$$f(-1)$$
 exist?

1b. $\lim_{x \to -1^{-}} f(-1) = 0$

1b.
$$\lim_{x \to -1^-} f(x) = 0$$
 1c. $\lim_{x \to -1^+} f(x) = 0$

1d. Does
$$f(x)$$
 have a limit at $x = -1$?

Yes $\lim_{x \to -1} f(x) = 0$

1e. Is
$$f(x)$$
 continuous at $x = -1$?

yes $b/c f(-1) = \lim_{x \to -1} f(x)$

$$rac{m\omega}{} \rightarrow hole$$

2d. Does $f(x)$ have a limit at $x = 0$?

2b.
$$\lim_{x \to 0^{-}} f(x) = -1$$
 2c. $\lim_{x \to 0^{+}} f(x) = 0$

2d. Does
$$f(x)$$
 have a limit at $x = 0$?

2e. Is
$$f(x)$$
 continuous at $x = 0$?

3d. Does
$$f(x)$$
 have a limit at $x=1$? yes $\lim_{x\to 1} f(x) = 2$

3e. Is the limit at
$$x = 1$$
 the same as the value of $f(x)$ at $x = 1$?

 $3b. \lim_{x \to 1^{-}} f(x) =$

3c.
$$\lim_{x \to 1^+} f(x) = 2$$

3f. Is $f(x)$ continuous at $x = 1$?

4a. Does
$$f(2)$$
 exist?

Ab. $\lim_{x\to 2^{-}} f(x) = 0$

4b. $\lim_{x\to 2^{-}} f(x) = 0$

4c. $\lim_{x\to 2^{+}} f(x) = 0$

4d. Does $f(x)$ have a limit at $x = 1$ the same as the value of $f(x)$ at $x = 2$?

4c. $\lim_{x\to 2^{+}} f(x) = 0$

4r. Is $f(x)$ continuous at $x = 2$?

4f. Is $f(x)$ continuous at $x = 2$?