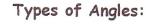
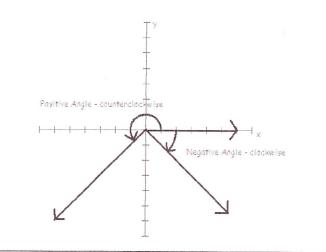
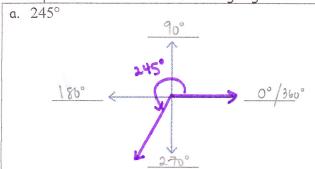

Pre-Calculus Notes

Name: _ ley


Section 4.1 - Radian and Degree Measure

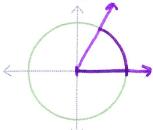

PART ONE: Radians and Degrees

Angle in Standard Position:



There are 360 degrees in ONE revolution.

Example 1: Sketch the following angles in standard position.

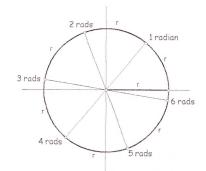


b. -170° -270° -170° -170° -170° -170°

Radian Measure:

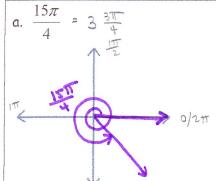
One radian is the measure of a central angle that intercepts an $\underline{arc\ equal\ to\ the}$ radius of the circle.

Draw in an angle with measure of "about" one radian.

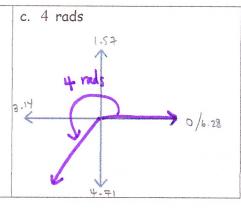


Approximately how many radians are in a circle? \approx bish radians

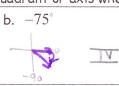
EXACTLY how many radians are in a circle? = 2π radians

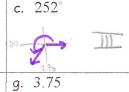

What is circumference of a circle? C = 2 Tr

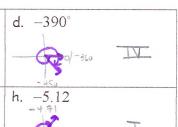
This means that one revolution is equal to 2π radians.



Sketch the following angles in standard position.

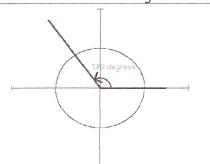


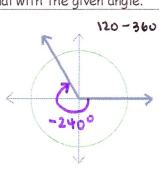


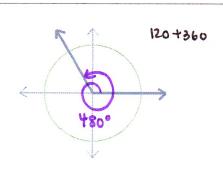


Example 3: State the quadrant or axis where each angle terminates.

a. 157°			b.
150 50			Liver
e2π			f.
0	+	x-axis	I TT-

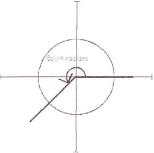


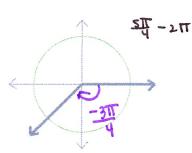


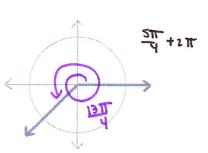


Co-terminal Angles are angles that have the same initial and terminal sides.

Draw in three other angles co-terminal with the given angle.







How many angles are co-terminal with 120°? _infinite

Could you get the calculator to give you a list of ALL of them? Sort of: y = 120 + 360 x, then look @ table

Yes, if

Example 4:

Example 4. State two coterminal angles for each given angle one positive and one negative.							
a. 40°	b800°	c. $\frac{5\pi}{}$					
40+360 = [400°]	-800 + 360 = -440°	4					
40-360 = [-3200]	-800+3(360) = [280°]	$\frac{S\Pi}{Y} - 2\Pi = \begin{bmatrix} -3\Pi \\ Y \end{bmatrix}$ $\frac{S\Pi}{Y} + 2\Pi = \begin{bmatrix} 13\Pi \\ Y \end{bmatrix}$					
d. 9π	e. 5	f47°					
$9\Pi - 2\Pi = \overline{+}\overline{\Pi}$	5-2TT & [-1.28]	-47 +360 = [313°]					
917-2 (517) = [-77]	5+2TT = [11.28]	-47 -360 = [-407]					

PART TWO: Conversions Between Degrees and Radians

TART TWO. Conversions between Degrees and Radians								
1 revolution is 2π radians	attrad = 360°		= 2TT rad					
$2\pi \ radians = 360^{\circ}$	211	$360^{\circ} = 2\pi \ radians$	360					
SO 1 radian = $\frac{180}{\pi}$	0	$50 1^{\circ} = $	ins					
then 7 radians = $\frac{7(180)}{11}$	0	then $7^{\circ} = \frac{7}{180} \frac{1}{180}$ rad	ians					
To convert $rads \Rightarrow deg$, multiply i	rads by $\frac{180}{\pi}$	To convert $\deg\Rightarrow\mathrm{rads}$, multiply degrees by $\frac{\pi}{180}$						
degrees.		rads.						

Example 1: Convert from degrees to radians.

a.
$$135^{\circ}$$
 135°
 180°
 180°

Example 2: Convert from radians to degrees.

a.
$$-\frac{\pi}{2}$$

b. $\frac{9\pi}{2}$
 $-\frac{117rad}{2}$
 $\frac{180}{2}$
 $\frac{180}{2}$
 $\frac{2 rad}{1}$
 $\frac{180^{\circ}}{1}$
 $\frac{360^{\circ}}{1}$
 $\frac{360^{\circ}}{1}$

Can we divide an angle up into units <u>smaller</u> than a degree?

better accuracy Why would we want to do so? ___

Deg° Min' Sec" OR D° M' S"

 $1' = \frac{1}{60} \text{ deg}$ 1 degree can be divided into 60 minutes (NOT TIME), so

1 minute can be divided into 60 seconds (NOT TIME), so $1'' = \frac{1}{60} \text{ min}$.

So, there are 3600 seconds in 1 degree, resulting in $1'' = \frac{1}{3600} \deg$

Change each angle measure to decimal degree form. SHOW YOUR WORK. Example 3:

a. 42°33'40"

$$-\left(300^{\circ} + \frac{52!}{1.00!} + \frac{30!!}{1.00!} + \frac{30!!}{3600!!}\right)$$

$$= -300.875^{\circ}$$

Example 4: Change each angle measure to D° M' S" form. SHOW YOUR WORK.

Will the calculator do the computations above for us?

look under angle menu -> [2nd [APPS]
and " is [ALPHA] [+]

