Pre-Calculus	Notes

Name:

Jeen

Section 9.1 - Sequences and Series Day ONE

Sequence: a listing of numbers, may or may
not have a pattern

Example 1)
$$-3$$
, 7, 0, 2, 100 a_1 a_2 a_3 a_4 a_5 ---- Read "a sub 5" - the 5th term of the sequence a_n : the nth term of sequence

Can you write other terms using the "nth" term?

Example 2) 5, 10, 15, 20, 25,...
$$a_{n+1}$$
 a_{n+2} a_{n+3}

Can you find a "formula" to find any term of the above sequence?

$$a_{n} = 5n$$
, therefore $a_{50} = 250$ and $a_{100} = 500$

For the following , find the first 5 terms and the indicated term.

Example 3)
$$a_n = 5n - 1$$
 Example 4) $a_n = \frac{(-2)^n}{n^2}$ $a_1 = 5(1) - 1 = 4$ $a_1 = \frac{(-\lambda)^1}{1^2} \Rightarrow \frac{-2}{1} \Rightarrow -2$ $a_2 = 5(2) - 1 = 9$ $a_2 = \frac{(-2)^2}{2^2} \Rightarrow \frac{4}{4} \Rightarrow 1$ $a_3 = 5(3) - 1 = 14$ $a_4 = \frac{(-2)^3}{3^2} \Rightarrow \frac{-8}{9}$ $a_4 = 5(4) - 1 = 19$ $a_4 = \frac{(-2)^4}{4^2} \Rightarrow \frac{16}{16} = 1$ $a_5 = 5(5) - 1 = 24$ $a_5 = \frac{(-\lambda)^5}{5^2} \Rightarrow \frac{-32}{25}$ $a_{10} = 5(10) - 1 = 49$ $a_{10} = \frac{(-\lambda)^{10}}{10^2} \Rightarrow \frac{1024}{100} \Rightarrow \frac{25}{2}$

Could you use the table feature of your calculator here? How could we get fractional answers for (Hint: put the numerator in \mathcal{Y}_1 and the denominator in \mathcal{Y}_2 .)

We call the above formulas EXPLICIT FORMUALAS because we use the <u>number of a term</u> to find the term.

Example 4) (1, 1, 2, 3, 5, 8, 13, 2)	Name? (Fibonacci sequence)	
	uence is the sum of previous 2 terms	
$a_{n+1} = a_n + a_{n-1}$		
We call the above formula RECURSIVE because we use <u>previous terms</u> to find a particular term.		
Use the following recursive formulas to write the first 5 terms of the sequence and an explicit formula.		
Example 5) $a_1 = 13, a_{n+1} = a_n + 10$	Example 6) $a_1 = 10$, $a_{k+1} = 10a_k$	
$a_1 = 5 - 1 = 13$	<i>a</i> _{1 =\0}	
$a_2 = 5 + 1 - 1 - 13 + 10 \Rightarrow 23$	$a_{2} = 10a_{1} = 10 \cdot 10 \Rightarrow 100$	
a3 = 5() = 1 23 +10 = 33	$a_{3} = 10a_{2} = 10.100 \Rightarrow 1000$	
$a_{4} = 5 + 1 = 33 + 10 = 343$	$a_{4} = 10a_3 = 10.1000 = 10,000$	
a ₅₌₅₍₎₌₁ +3+10 => 53	a5 = 10 a4 = 10.10000 = 100000	
$a_{n=5}$ 1 10n +3 or	$a_{n} = \frac{10a_{n-1}}{a}$ or $\frac{10}{a}$	
Many sequences have both explicit and recursive formulas. Some only have a recursive and some only an explicit. Consider the following sequences and give (a) a recursive formula and/or (b) an explicit formula.		
Example 7) 1, 11, 21, 31, 41		
(a) RECURSIVE FORMULA: $a_{n+1} = 0$, $a_n = 1$		
(b) EXPLICIT FORMUAL: $a_n = 10(N-1)+1$ on $10n-9$		
Note: The pairing here is (1,1), (2,11), (3,21), (4,31) - this is a <u>linear</u> function. Hence the equation must be in the $y = mx + b$ format! $m = 10$ $y = 10x + b$ $y = 10(1) + b$		
Example 8) 4, 16, 64, 256, 1024		
(a) RECURSIVE FORMULA: $a_{n+1} = 4 \alpha_n$, $\alpha_n = 4$		
(b) EXPLICIT FORMUAL: $a_n = 4^n$		

Not all sequences have explicit formulas. Consider the following sequence. What is its pattern and what is the 7^{th} term?

Example 9)
$$\frac{1}{1}$$
, $\frac{-1}{8}$, $\frac{1}{27}$, $\frac{-1}{64}$, $\frac{1}{125}$, $\frac{-1}{216}$

(a) RECURSIVE FORMULA:
$$a_{n+1} = \underline{\qquad}$$

(b) EXPLICIT FORMUAL:
$$a_n = \frac{(-1)^{n-1}}{N^3}$$
 $M = \frac{(-1)^{n+1}}{N^3}$

Example 10)
$$1\frac{1}{2}$$
, $1\frac{1}{4}$, $1\frac{1}{8}$, $1\frac{1}{16}$, $1\frac{1}{32}$, $\frac{1}{64}$

(a) RECURSIVE FORMULA:
$$a_{n+1} = \underline{\qquad}$$

(b) EXPLICIT FORMUAL:
$$a_n = 1 + \left(\frac{1}{2}\right)^n$$
 or $1 + \frac{1}{2}$.

Example 11)

A deposit of \$100 is make each month in an account that earns 12% interest compounded monthly. The balance in the account after n months is given by

$$\Rightarrow A_n = 100(101) \left[(101)^n - 1 \right]$$
 Hint: use your calculator!!!!