Pre-Calculus Notes Name: key ## Section 9.2 - Arithmetic Sequences and Partial Sums ARITHMETIC SEQUENCE: Sequence in which each term is derived by adding the same number (common difference) to previous term Common Difference: The difference between 2 consecutive terms Today we are going to look for a "simple" way to find an explicit formula for an arithmetic sequence. Consider the following sequence. Do you see a pattern for obtaining each term? | a_1 | a_2 | a_3 | a_4 | a_5 | |---------|----------|----------|-------------|-----------------| | 5 | 8 | 11 | 14 | 17 | | 5 | (5+3) | (5+3)+3 | ((5+3)+3)+3 | (((5+3)+3)+3)+3 | | 5+(0)3 | 5+(\)3 | 5+(2)3 | 5+(3)3 | 5+(屮)3 | Therefore the **EXPLICIT FORMULA** is: $$a_n = 5 + (n-1)3$$ What is the <u>RECURSIVE FORMULA?</u>. $$a_1 = 5$$, $a_n = a_{n-1} + 3$ ## General Form of an Arithmetic Sequence: **Recursive:** a_1 , $a_{n+1} = a_n + d$ Explicit: $a_n = a_1 + (n-1)d$ Example 1: For the following arithmetic sequences, find both the explicit and recursive formulas | | Sequence | Recursive Formula AND Explicit Formula | |----|--|--| | a) | 1, 9, 17, 25, 33, 41, 49,
+&+&+& +&+& | $a_{1} = \underline{\qquad} \qquad a_{n+1} = \underline{\qquad} \qquad 0_{N} + 8$ $a_{n} = \underline{\qquad} \qquad (N-1) 8 \qquad \text{or} \qquad 8N-7$ | | b) | 10, 7, 4, 1, -2, -5, | $a_1 = 10$ $a_{n+1} = a_n - 3$
$a_n = 10 + (n-1)(-3)$ or $a_n = -3n + 13$ | | c) | a ₁ =10, d=6 | $a_1 = 10$ $a_{n+1} = a_n + b$
$a_n = 10 + (n-1)b$ or $a_n = b_n + 4$ | c) $$a_1=1$$, $d=\frac{2}{5}$ $$\frac{a_1=1}{a_1+a_1+a_1+a_1+a_1+a_2}$$ $$\frac{a_1=1}{a_1+a_1+a_1+a_1+a_2}$$ Can anyone see a "quicker" way to get the simplified version of the formula? Yewember $y=m\times +b$, fill in the 1st pairing and get $b=a_1=d(1)+\dots > a_n=d(n)+b$ Example 2: Find the explicit formula and the indicated term. a) $$a_4=1$$, $a_{10}=37$ $a_n=-17+(N-1)b$ $a_{21}=-17+(21-1)b$ $$0_{10}=0_{4}+(10-4)d$$ $$0_{4}=0_{1}+(4-1)d$$ $$0_{21}=103$$ $$0_{21}=103$$ $$0_{21}=103$$ $$0_{21}=103$$ $$0_{21}=103$$ $$0_{21}=103$$ $$0_{21}=103$$ Can you find the 21^{st} term without finding the general term formula? How? $$a_{21} = a_4 + (21 - 4)d$$ or $a_{21} = a_{10} + (21 - 10)d$ $a_{21} = 1 + 17 \cdot 6$ $a_{21} = 37 + 11 \cdot 6$ $a_{21} = 103$ $a_{21} = 103$ b) $$a_4=20$$, $a_{13}=65$ $a_n = \frac{5+(N-1)5}{20+(N-1)4}$ $a_{21} = \frac{5+(21-1)5}{20+(N-1)4}$ \frac{5+(N-1)5}{20+(N-1)4}$ =$ Could you use <u>"table"</u> on your calculator to help you find the 21st term and check your formula? Write the first five terms of the sequence, find the common difference and write the nth term of the sequence as a function of n. (explicit formula) d) $$a_1=72$$, $a_{k+1}=a_k-6$ 72 66 60 54 48 $$d = -6$$ $$a_n = 72 + (n-1)(-6)$$ or $a_n = -6n + 78$ Example 1: Find the partial sum S_6 for the series. a) $$\sum_{n=1}^{\infty} 5n = 5 + 10 + 15 + 20 + 25 + 30 + ...$$ $$5 + 10 + 15 + 20 + 25 + 30$$ $$4 + 14 + 24 + 34 + 44 + 54$$ $$S_{6} = 105$$ $$S_{6} = 174$$ Just finding the terms and adding them up is good for series with a small number of terms. This is not a good method, however, if we have a large number of terms. Let us see if we can find a short cut! Make up an arithmetic series with "say" six terms. Then write it backwards under the original. What do you notice? ARITHMETIC SERIES: $$S_n = \frac{n(a_1 + a_2)}{2}$$ OR $S_n = \frac{n(2a_1 + (n-1)d)}{2}$ Example 2: Find each indicated partial sum. a) $$S_{10}$$ for $\sum_{k=1}^{\infty} (3k+1)$ $S_{10} = \frac{10(a_1 + a_{10})}{2}$ $S_{10} = \frac{10 \cdot (4+31)}{2}$ $S_{10} = 175$